

Toxicology and Carcinogenesis Studies of Androstenedione

Chad Blystone, Ph.D.

National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors
Technical Reports Review Subcommittee Meeting
February 25, 2009

Nomination and Exposure

- Androstenedione (Andro) was nominated for study by NCI due to health concerns from its chronic use by athletes and bodybuilders
- Androstenedione was promoted as an anabolic hormone (of questionable efficacy) in dietary supplements. Common routes were oral, sublingual, and dermal
- Recommended doses ranged from 100 1200 mg/day (70 kg person = 1.4 - 17.1 mg/kg/day)
- In 2004, androstenedione was banned for sale in dietary supplements due to Anabolic Steroid Control Act

Metabolism

Androstenedione CYP19 Androstenedione CH3 ANDROSTENE CH3 H ANDROSTENE ANDROSTENE CH3 H ANDROSTENE ANDROSTENE ANDROSTENE ANDROSTENE ANDROSTENE ANDROSTENE CH3 H ANDROSTENE ANDROSTENE

Study Rationale and Objectives

- Objective: characterize the chronic toxicity and carcinogenic activity of androstenedione in F344/N rats and B6C3F1 mice
- · Study design:
 - Genetic toxicity studies (in vitro and in vivo)
 - Subchronic gavage studies in F344/N rats and B6C3F1 mice
 - Chronic gavage studies in F344/N rats and B6C3F1 mice

Subchronic and Genetic Toxicity Studies

- Doses: 0, 1, 5, 10, 20, and 50 mg/kg/d (aqueous 0.5% methyl cellulose)
- · 2 week studies in rats and mice:
 - No dose limiting effects
 - Liver peroxisome and cell proliferation assays were negative in mice and rats
- 3 month studies in rats and mice:
 - No dose limiting effects; treatment related effects in adrenal X-zone of female mice
 - Reduction in spermatozoa numbers (rat) and motility (mouse) suggest possible adverse effects on reproduction
- · Genetic Toxicity:
 - Androstenedione was negative in NTP bacterial assays
 - Bone marrow micronucleus assay was negative in rats
 - Peripheral blood erythrocyte micronucleus test was negative in male mice, equivocal in females (50 mg/kg)

Androstenedione Doses for Chronic Exposure Study

- Dose levels selected for chronic exposure (2 year) were:
 - 0,10, 20 and 50 mg/kg/d for rats and male mice due to:
 - · No observed intolerable dose effects in subchronic studies
 - Limit of gavageability at 50 mg/kg/d
 - 0, 2, 10, and 50 mg/kg/d for female mice:
 - · suspected ovarian atrophy in the 3 month study
 - · not confirmed by PWG

F344/N Rats Survival Curves during Chronic Exposure

No treatment effects on survival in female rats (76, 74, 66, 74%)

F344/N Rats Growth Curve during Chronic Exposure

No treatment effects in male rat growth

Mononuclear Cell Leukemia Incidence in F344/N Rats

	0 mg/kg	10 mg/kg	20 mg/kg	50 mg/kg
Male	26	22	18*	18*
Female	5* (10%)	11(22%)	18*** (36%)	15*(30%)

* p < 0.05, *** p < 0.001

Female HC: Same route 17% (10-24%), all routes 22% (8-40%); Historical Controls from same route and all routes includes the current control

^{*} in control group indicates statistically significant trend

Alveolar/bronchiolar Neoplasm Incidences in the F344/N Rat

	0 mg/kg	10 mg/kg	20 mg/kg	50 mg/kg
<u>Male</u>				
Adenomas	0	0	5* (10%)	2 (4%)
Adenoma or Carcinoma	0	0	5* (10%)	3 (6%)

^{*} p < 0.05

Adenomas: Same route 1.0% (0-2%), all routes 2.4% (0-8%)

Adenomas or Carcinomas: Same route 1.0% (0-2%), all routes 3.4% (0-10%)

Decreasing Incidences of Lesions in the F344/N Rat

	0 mg/kg	10 mg/kg	20 mg/kg	50 mg/kg
<u>Male Testis</u>				
Testis Interstitial Cell Adenoma	42***	39	36	26***
Bilateral Adenoma	29	29	28	10**
Female Mammary Gland				
Multiple Fibroadenomas	17	13	6**	3**
Fibroadenoma	35***	31	22**	12***
Fibroadenomas, Adenoma, or Carcinomas	37***	32	22**	12***
Hyperplasia	48	40**	35**	23**
Cyst	15	3**	9	3**

^{**} p < 0.01, *** p < 0.001 * in control group indicates statistically significant trend

B6C3F1 Mice Survival

No treatment effects on female survival (73, 80, 82, 82%)

B6C3F1 Mice Growth

No treatment effects on male mice growth

10 and 50 mg/kg/d Female mice weights were lower than controls

Hepatocellular Neoplasm Incidence in Male B6C3F1 Mice

	0 mg/kg	10 mg/kg	20 mg/kg	50 mg/kg
Multiple Adenoma	16	27*	23	34**
Adenomas	32**	38	29	43**
Multiple Carcinoma	7	12**	10	17**
Adenoma or Carcinoma	41*	47	42	48*
Multiple Hepatoblastoma	0	1	1	3
Hepatoblastoma	3	8	7	8
	(6%)	(16%)	(14%)	(16%)
A denoma, Carcinoma, Hepatoblastoma	41*	47	43	48*

^{*}p < 0.05, ** p < 0.01

Hepatoblastomas: Same route 5.0% (4-6%), all routes 3.3% (0-34%)

^{*} in control group indicates statistically significant trend

Hepatocellular Neoplasm incidence in Female B6C3F1 Mice

	0 mg/kg	2 mg/kg	10 mg/kg	50 mg/kg
Multiple Adenoma	4	7	7	17**
Adenomas	14***	16	18	28**
Multiple Carcinoma	1	2	5	4
Carcinoma	5	13*	15*	15*
Adenoma or Carcinoma	17**	23	27	32***

 $^{^*}$ p < 0.05, ** p < 0.01, *** p < 0.001 * in control group indicates statistically significant trend

Pancreatic Lesions in B6C3F1 Mice

0 mg/kg	10 mg/kg	20 mg/kg	50 mg/kg
2 (4%)	2 (4%)	2 (4%)	5 (10%)
0	0	0	1
729 (T)	729 (T)	620	493
0 mg/kg	2 mg/kg	10 mg/kg	50 mg/kg
0	2 (4%)	4 (8%)	4 (8%)
	2 (4%) 0 729 (T) 0 mg/kg	2 (4%) 2 (4%) 0 0 729 (T) 729 (T) 0 mg/kg 2 mg/kg	2 (4%) 2 (4%) 2 (4%) 0 0 0 729 (T) 729 (T) 620 0 mg/kg 2 mg/kg 10 mg/kg

Male: Same route 2.0% (0-4%), all routes 1.2% (0-6%) Female: Same route 1.1% (0-2%), all routes 0.8% (0-2%)

Masculinization in Female B6C3F1 mice

	0 mg/kg	2 mg/kg	10 mg/kg	50 mg/kg
Glomerulus Metaplasia	2 (1.5)	1 (2.0)	5 (1.0)	27** (2.0)
Submandibular Salivary Gland Cytopl. Alter.	0	17** (1.2)	40** (1.4)	45** (2.5)

** p < 0.01

Control Female 50 mg/kg/d Female
Glomerulus Metaplasia

1=minimal, 2=mild, 3=moderate, 4=marked

Control Female 50 mg/kg/d Female
Submandibular Salivary Gland
Cytoplasmic Alteration

Chronic Study Conclusions

- Equivocal evidence of carcinogenic activity in male F344/N rats:
 - Increase incidence of alveolar/bronchiolar adenomas and combined adenomas and carcinomas
- Equivocal evidence of carcinogenic activity in female F344/N rats:
 - Increased incidence of mononuclear cell leukemia
- Clear evidence of carcinogenic activity in male and female B6C3F1 mice:
 - Increased incidence of hepatocellular neoplasm multiplicity and total combined neoplasms (males). Increased incidence of hepatocellular adenomas and carcinomas (females)
 - Increased incidence of pancreatic islet cell adenomas were also considered related to treatment

Androstenedione Metabolism in Hepatocytes (major pathways)

 5α reduction intermediate 5α -androstanedione not shown